Symmetric Digraphs from Powers Modulo n

نویسندگان

  • Guixin Deng
  • Pingzhi Yuan
چکیده

For each pair of positive integers n and k, let G(n,k) denote the digraph whose set of vertices is H = {0,1,2,···, n – 1} and there is a directed edge from a  H to b  H if a  b(mod n). The digraph G(n,k) is symmetric if its connected components can be partitioned into isomorphic pairs. In this paper we obtain all symmetric G (n,k).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some sufficient conditions for the existence of kernels in infinite digraphs

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V (D)− N there exists an arc from w to N . If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of...

متن کامل

The Iteration Digraphs of Lambert Map Over the Local Ring $mathbb{Z}/p^kmathbb{Z}$ : Structures and Enumerations

Let $p$ be prime and $alpha:x mapsto xg^x$, the Discrete Lambert Map. For $kgeq 1,$ let $ V = {0, 1, 2, . . . , p^k-1}$. The iteration digraph is a directed graph with $V$ as the vertex set and there is a unique directed edge from $u$ to $alpha(u)$ for each $uin V.$ We denote this digraph by $G(g, p^{k}),$ where $gin (mathbb{Z}/p^kmathbb{Z})^*.$  In this piece of work, we investigate the struct...

متن کامل

Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...

متن کامل

Seventh Power Moments of Kloosterman Sums

Evaluations of the n-th power moments Sn of Kloosterman sums are known only for n 6 6. We present here substantial evidence for an evaluation of S7 in terms of Hecke eigenvalues for a weight 3 newform on Γ0(525) with quartic nebentypus of conductor 105. We also prove some congruences modulo 3, 5 and 7 for the closely related quantity T7, where Tn is a sum of traces of n-th symmetric powers of t...

متن کامل

Potential Automorphy of Odd-dimensional Symmetric Powers of Elliptic Curves, and Applications

The present article was motivated by a question raised independently by Barry Mazur and Nick Katz. The articles [CHT,HST,T] contain a proof of the Sato-Tate conjecture for an elliptic curve E over a totally real field whose j-invariant j(E) is not an algebraic integer. The Sato-Tate conjecture for E is an assertion about the equidistribution of Frobenius angles of E, or equivalently about the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011